241 research outputs found

    Wandering Julia components of cubic rational maps

    Full text link
    We prove that every wandering Julia component of cubic rational maps eventually has at most two complementary components.Comment: 10 pages, 2 figure

    Renormalization and wandering continua of rational maps

    Get PDF
    24 pagesRenormalizations can be considered as building blocks of complex dynamical systems. This phenomenon has been widely studied for iterations of polynomials of one complex variable. Concerning non-polynomial hyperbolic rational maps, a recent work of Cui-Tan shows that these maps can be decomposed into postcritically fnite renormalization pieces. The main purpose of the present work is to perform the surgery one step deeper. Based on Thurston's idea of decompositions along multicurves, we introduce a key notion of Cantor multicurves (a stable multicurve generating infnitely many homotopic curves under pullback), and prove that any postcritically fnite piece having a Cantor multicurve can be further decomposed into smaller postcritically fnite renormalization pieces. As a byproduct, we establish the presence of separating wandering continua in the corresponding Julia sets. Contrary to the polynomial case, we exploit tools beyond the category of analytic and quasiconformal maps, such as Rees-Shishikura's semi-conjugacy for topological branched coverings that are Thurston-equivalent to rational maps

    All-trans retinoic acid regulates the expression of the extracellular matrix protein fibulin-1 in the guinea pig sclera and human scleral fibroblasts

    Get PDF
    Purpose: Fibulin-1 (FBLN1) mRNA is expressed in human sclera and is an important adhesion modulatory protein that can affect cell-matrix interactions and tissue remodeling. Scleral remodeling is influenced by all-trans retinoic acid (RA). Our purpose was to confirm the presence of fibulin-1 protein in guinea pig sclera and investigate the effect of RA on the expression of fibulin-1 in guinea pig sclera in vivo and in cultured human scleral fibroblasts (HSFs). Methods: Confocal fluorescence microscopy was used to study fibulin-1 and aggrecan expression and localization in sclera from control guinea pigs and in animals given RA by daily gavage from 4 to 8 days of age. The effects of RA (from 10⁻⁹ to 10⁻⁵ M) on fibulin-1 expression in HSFs were observed by immunohistochemistry and assayed by real-time PCR and western blot analysis. Results: Fibulin-1 protein expression was detected by confocal fluorescence microscopy in guinea pig sclera and in cultured HSFs. Upregulation of fibulin-1 in scleral tissue was observed after feeding with RA. In vitro, the level of Fbln1 mRNA was increased after treatment of HSFs with RA (at concentrations of 10⁻⁸ to 10⁻⁶ M; p<0.001), with a maximum effect at 10⁻⁷ M. Fibulin-1 protein levels were significantly increased after treatment of HSFs with 10⁻⁷ M of RA for 24 or 48 h (p<0.05). Conclusions: Fibulin-1 protein was expressed in guinea pig sclera and cultured HSFs. Expression was regulated by RA, a molecule known to be involved in the regulation of eye growth. Further studies on the role of fibulin-1 in the regulation of eye growth, including during the development of myopia, are therefore warranted

    3D Printing of Superhydrophobic Objects with Bulk Nanostructure

    Get PDF
    The rapid development of 3D printing (or additive manufacturing) technologies demands new materials with novel properties and functionalities. Superhydrophobic materials, owing to their ultralow water adhesion, self-cleaning, anti-biofouling, or superoleophilic properties are useful for myriad applications involving liquids. However, the majority of the methods for making superhydrophobic surfaces have been based on surface functionalization and coatings, which are challenging to apply to 3D objects. Additionally, these coatings are vulnerable to abrasion due to low mechanical stability and limited thickness. Here, a new materials concept and methodology for 3D printing of superhydrophobic macroscopic objects with bulk nanostructure and almost unlimited geometrical freedom is presented. The method is based on a specific ink composed of hydrophobic (meth)acrylate monomers and porogen solvents, which undergoes phase separation upon photopolymerization to generate inherently nanoporous and superhydrophobic structures. Using a desktop Digital Light Processing printer, superhydrophobic 3D objects with complex shapes are demonstrated, with ultralow and uniform water adhesion measured with scanning droplet adhesion microscopy. It is shown that the 3D-printed objects, owing to their nanoporous structure throughout the entire volume, preserve their superhydrophobicity upon wear damage. Finally, a superhydrophobic 3D-printed gas-permeable and water-repellent microfluidic device and a hierarchically structured 3D-printed super-oil-absorbent are demonstrated

    Dynamic radiomics for predicting the efficacy of antiangiogenic therapy in colorectal liver metastases

    Get PDF
    Background and objectiveFor patients with advanced colorectal liver metastases (CRLMs) receiving first-line anti-angiogenic therapy, an accurate, rapid and noninvasive indicator is urgently needed to predict its efficacy. In previous studies, dynamic radiomics predicted more accurately than conventional radiomics. Therefore, it is necessary to establish a dynamic radiomics efficacy prediction model for antiangiogenic therapy to provide more accurate guidance for clinical diagnosis and treatment decisions.MethodsIn this study, we use dynamic radiomics feature extraction method that extracts static features using tomographic images of different sequences of the same patient and then quantifies them into new dynamic features for the prediction of treatmentefficacy. In this retrospective study, we collected 76 patients who were diagnosed with unresectable CRLM between June 2016 and June 2021 in the First Hospital of China Medical University. All patients received standard treatment regimen of bevacizumab combined with chemotherapy in the first-line treatment, and contrast-enhanced abdominal CT (CECT) scans were performed before treatment. Patients with multiple primary lesions as well as missing clinical or imaging information were excluded. Area Under Curve (AUC) and accuracy were used to evaluate model performance. Regions of interest (ROIs) were independently delineated by two radiologists to extract radiomics features. Three machine learning algorithms were used to construct two scores based on the best response and progression-free survival (PFS).ResultsFor the task that predict the best response patients will achieve after treatment, by using ROC curve analysis, it can be seen that the relative change rate (RCR) feature performed best among all features and best in linear discriminantanalysis (AUC: 0.945 and accuracy: 0.855). In terms of predicting PFS, the Kaplan–Meier plots suggested that the score constructed using the RCR features could significantly distinguish patients with good response from those with poor response (Two-sided P&lt;0.0001 for survival analysis).ConclusionsThis study demonstrates that the application of dynamic radiomics features can better predict the efficacy of CRLM patients receiving antiangiogenic therapy compared with conventional radiomics features. It allows patients to have a more accurate assessment of the effect of medical treatment before receiving treatment, and this assessment method is noninvasive, rapid, and less expensive. Dynamic radiomics model provides stronger guidance for the selection of treatment options and precision medicine

    A review of factors influencing sensitive skin: an emphasis on built environment characteristics

    Get PDF
    BackgroundSensitive skin (SS) is a condition characterized by hyperreactivity. Impacting around 37 percent of the worldwide population and exerting an influence on the quality of life for affected individuals. Its prevalence rate has increased due to factors such as elevating stress levels and deteriorating environmental conditions. The exposome factors influencing SS have extended from demographic, biological attributes, and lifestyle to external environments. Built environments (BEs) have demonstrated as root drivers for changes in behaviors and environmental exposure which have the potential to trigger SS, but the review of the associations between BEs and SS is currently lacking.ObjectiveThis review aims to achieve two primary objectives: (1) Examine exposome factors that exert influence on SS at the individual and environmental levels. (2) Develop a theoretical framework that establishes a connection between BEs and SS, thereby offering valuable insights into the impact of the built environment on this condition.MethodsAn extensive literature search was carried out across multiple fields, including sociology, epidemiology, basic medicine, clinical medicine, and environmental research, with a focus on SS. To identify pertinent references, renowned databases such as PubMed, Web of Science, and CNKI were utilized.ResultsSS is the outcome of interactions between individual attributes and environmental factors. These influencing factors can be categorized into five distinct classes: (1) demographic and socioeconomic characteristics including age, gender, and race; (2) physiological and biological attributes such as emotional changes, skin types, sleep disorders, and menstrual cycles in women; (3) behavioral factors, such as spicy diet, cosmetic use, alcohol consumption, and physical exercise; (4) natural environmental features, including climate conditions and air pollution; (5) built environmental features such as population density, green space availability, road network density, and access to public transportation, also have the potential to affect the condition.ConclusionThe importance of interdisciplinary integration lies in its ability to ascertain whether and how BEs are impacting SS. By elucidating the role of BEs in conjunction with other factors in the onset of SS, we can provide guidance for future research endeavors and the formulation of interventions aimed at mitigating the prevalence of SS
    corecore